¿Qué es la superconductividad?
La superconductividad es una tecnología en constante desarrollo que está destinada a jugar un importante papel en nuestras vidas hacia el siglo XXI. Naturalmente el logro de mayores temperaturas críticas está ligado al descubrimiento de nuevos materiales. Se prevé que el impacto que pueda causar en la sociedad mundial será semejante, sino mayor, al que tuvo la utilización del transistor.
La superconductividad es una propiedad de algunos compuestos que no oponen resistencia alguna al paso de corriente ya que los electrones se desplazan sin colisiones y en zigzag a través de los cristales del átomo, es decir materiales con resistencia nula con los cuales se puede ahorrar la energía que se disipa en forma de calor en los otros conductores, debido a la colisión de los electrones entre sí y con los átomos del material. Además de lo anterior tienen otra característica muy importante que consiste en que expulsan de su interior los campos magnéticos mientras estos no sobrepasen un valor límite.
El descubrimiento de la superconductividad se remonta a 1908, año en el que el físico holandés Heike Kamerlingh Onnes llegó a enfriar el helio hasta el punto de su licuefacción, a una temperatura próxima al cero absoluto. Esta experiencia le permitió observar fenómenos desconocidos hasta entonces y casi inconcebibles para los científicos de la época: por un lado, la superfluidez y por el otro lado la superconductividad, que Onnes demostró por primera vez en 1911.
Para lograr estas bajas temperaturas es necesario poner las muestras en contacto con helio líquido, elemento difícil de obtener y que requiere de procesos complicados y costosos para mantenerlo en su fase líquida. Desde entonces se inicio una búsqueda ininterrumpida para alcanzar aleaciones que alcanzaran la fase superconductora a temperaturas más elevadas.
La curiosidad que Onnes sentía hacia el comportamiento de la materia a bajas temperaturas lo condujo al descubrimiento de la superconductividad experimentando con el mercurio, siendo posible porque había conseguido la licuación del helio que permitió enfriar los materiales a temperaturas próximas al cero absoluto (-273°C).
Propiedades
Los superconductores ofrecen cuatro grandes ventajas sobre los conductores normales que podrían ser explotadas en muchas aplicaciones, ellas son:
Conducen la electricidad sin pérdida de energía, y por tanto, podrían utilizarse en lugar de los conductores para ahorrar energía.
No tienen resistencia, y por consiguiente no generan calor cuando se hace pasar corriente eléctrica por ellos. En un conductor ordinario, la pérdida de energía debida a su resistencia se disipa en forma de calor. Este calor impone un límite al número de componentes electrónicos que pueden ser empaquetados juntos. Utilizando superconductores se podrían empaquetar herméticamente un gran número de componentes electrónicos, sin preocuparse por la disipación de calor.
Tienen capacidad para crear campos magnéticos intensos. Estos campos pueden ser generados por imanes superconductores relativamente pequeños.
Pueden utilizarse para formar uniones Josephson, que son conmutadores superconductores. Su funcionamiento es similar al de un transistor, pero la unión Josephson es capaz de conmutar a una velocidad 100 veces superior. Conectando dos uniones Josephson de una forma especial, pueden detectarse campos magnéticos extremadamente débiles. Estos detectores tan sensibles de campos magnéticos reciben el nombre de SQUID's (Super-conducting Quantum Interference Devices Dispositivos superconductores de interferencia cuántica).
No hay comentarios:
Publicar un comentario